Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 274: 104805, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587728

RESUMO

Contryphans, peptides containing a single disulfide bond, are found abundantly in cone snail venom. The analysis of a large dataset of available contryphan sequences permits a classification based on the occurrence of proline residues at positions 2 and 5 within the macrocyclic 23-membered disulfide loop. Further sequence diversity is generated by variable proteolytic processing of the contryphan precursor proteins. In the majority of contryphans, presence of Pro at position 2 and a D-residue at position 3 leads to a slow conformational dynamics, manifesting as anomalous chromatographic profiles during LC analysis. LC-MS analysis of diverse contryphans suggests that elution profiles may be used as a rapid diagnostic for the presence of the Pro2-DXxx3 motif. Natural sequences from C.inscriptus and C.frigidus together with synthetic analogs permit the delineation of the features necessary for abnormal chromatographic behaviour. A diagnostic for the presence of Pro at position 5 is obtained by the observation of non-canonical fragment ions, generated by N-Cα bond cleavage at the dehydroalanine residue formed by disulfide cleavage. Anomalous LC profiles supports Pro at position 2, while non-canonical mass spectral fragments established Pro at position 5, providing a rapid method for contryphan analysis from LC-ESI-MS/MS profiles of crude Conus venom. SIGNIFICANCE: Contryphans are peptides, widely distributed in cone snail venom, which display extensive sequence diversity. Heterogeneity of proteolytic processing of contryphan precursor proteins, together with post-translational modifications contributes to contryphan diversity. Contryphans, identified by a combination of mass spectrometry and transcriptomic analysis, are classified on the basis of sequence features, primarily the number of proline residues within the disulfide loop. Conformational diversity arises in contryphans by cis-trans isomerization of Cys-Pro bonds, resulting in characteristic chromatographic profiles, permitting identification even in crude venom mixtures. Rapid identification of contryphans in cone snail peptide libraries is also facilitated by diagnostic mass spectral fragments arising by non-canonical cleavage of the N-Cα bond at Cys(7).


Assuntos
Conotoxinas , Caramujo Conus , Animais , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Peptídeos/química , Venenos de Moluscos/química , Dissulfetos/química , Prolina , Caramujo Conus/química , Conotoxinas/química
2.
Biochim Biophys Acta Proteins Proteom ; 1868(5): 140391, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32058072

RESUMO

Transcriptomic analysis of cone snail venom duct tissue has permitted the identification of diverse conopressin/conophysin precursor sequences from seven distinct Conus species. Multiple precursor isoforms are present in C.monile, C.lividus and C.loroisii. Aqueous extracts of the venom duct tissue from C.monile yield a band, at ~ 15-20 kDa on SDS-PAGE. In-gel trypsin digestion, followed by mass spectrometry establishes the presence of two distinct conopressin/conophysin isoforms that differ at position 8 in the predicted conopressin nonapeptide sequence. Mass spectrometric analysis of aqueous extracts revealed the presence of four conopressin related peptides, whose sequences could be deduced from MS/MS fragmentation patterns. The four sequences determined in this study are CFIRNCPKG*, CFIRNCPEG*, CFIRNCPK* and CFIRNCPE* (∗ indicates amide), which were further confirmed by comparison with chemically synthesized peptides. A conophysin with a mass of 9419.7 Da was also detected, corresponding to one of the isoforms revealed by the transcriptome data. Complete conservation of fourteen Cys residues and the key residues involved in peptide hormone binding is established by comparison of conophysin sequences, with the crystallographically characterized sequence of bovine neurophysin, in complex with vasopressin. A survey of available sequences for oxytocin/vasopressin peptides in both vertebrates and invertebrates establishes the conopressins as a distinct group in this family. C-terminal amidated, truncated conopressin analogs may arise by alternate post-translational processing.


Assuntos
Caramujo Conus/metabolismo , Venenos de Moluscos/química , Neurofisinas/química , Ocitocina/análogos & derivados , Vasopressinas/química , Animais , Caramujo Conus/genética , Venenos de Moluscos/genética , Proteoma/química , Homologia de Sequência de Aminoácidos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...